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Abstract

In this study, we use volume-penalization to mimic the presence of obstacles in a flow or a domain with no-slip bound-
aries. This allows in principle the use of fast Fourier spectral methods and coherent vortex simulation techniques (based on
wavelet decomposition of the flow variables) to compute turbulent wall-bounded flow or flows around solid obstacles by
simply adding one term in the equation. Convergence checks are reported using a recently revived, and unexpectedly dif-
ficult dipole-wall collision as a benchmark computation. Several quantities, like the vorticity isolines, truncation error,
kinetic energy and enstrophy are inspected for a collision of a dipole with a no-slip wall and compared with available
benchmark data obtained with a standard Chebyshev pseudospectral method. We quantify the possible deteriorating
effects of the Gibbs phenomenon present in the Fourier based schemes due to continuity restrictions of the penalized
Navier—Stokes equations on the wall. It is found that Gibbs oscillations have a negligible effect on the flow evolution allow-
ing higher-order recovery of the accuracy on a Fourier basis by means of postprocessing. An advantage of coherent vortex
simulations, on the other hand, is that the degrees of freedom of the flow computation can strongly be reduced. In this
study, we quantify the possible reduction of degrees of freedom while keeping the accuracy. For an optimal convergence
scenario the penalization parameter has to scale with the number of Fourier and wavelet modes. In addition, an implicit
treatment of the Darcy drag term in the penalized Navier—Stokes equations is beneficial since this allows one to set the time
step independent from the penalization parameter without additional computational or memory requirements.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

A simple two-dimensional vortex—wall collision poses a serious challenge for CFD methods, see, for exam-
ple, the simulation of the dipole-wall collision with a no-slip wall conducted with both finite differences and
Chebyshev spectral methods [6]. In particular, the formation and detachment of very thin boundary layers,
containing high-amplitude vorticity, during the collision process and the subsequent formation of small-scale
vorticity patches in the near-wall region can possibly deteriorate the accuracy of the flow computation. This
dramatically affects the dynamics of the flow after the impact. The initial flow field fulfills the boundary con-
dition (within machine precision no normal and tangential velocities at the no-slip boundaries) such that ini-
tialization errors are avoided. The boundary layers are produced during the approach of the dipole to the wall.
The production of small-scale vorticity during the vortex—wall interaction makes this process a very good
benchmark for many CFD methods aimed at simulation of wall-bounded flows or flows around solid
obstacles.

The first numerical investigation of the dipole-wall problem was conducted by Orlandi [30] already a
decade ago. Later, other studies used the dipole-wall collision experiment to investigate the reliability of
several CFD methods. For example, Ould-Salihi et al. [31] used this test case to validate particle methods
against finite-difference methods. Cottet et al. [10,11] used the dipole-wall collision as a benchmark to val-
idate mesh adaption techniques that allow the use of refined vortex methods in both directions near the
wall. Another example, considering a B-spline numerical method, can be found in Kravchenko et al.
[26]. They analyzed the effect of zonal embedded grids on the evolution of the dipole-wall collision. Clercx
and Bruneau [6] provide, on the other hand, a more detailed comparison of finite differences and a pseudo-
spectral Chebyshev method. It was observed that the dipole-wall problem is an extremely though test case,
i.e. the resolution to achieve grid or mode convergence should be substantially larger than considered
previously.

In this paper, we examine the convergence and accuracy of a fast Fourier spectral method combined with
an immersed boundary technique called volume-penalization [1] to mimic the no-slip boundary condition.
Fourier spectral methods are potentially accurate for sufficiently smooth functions on double-periodic
domains. Moreover, these methods are fast, relatively easy to implement even for performing parallel compu-
tations (see Ref. [41]). Incorporation of no-slip boundaries is, however, not straightforward.

In the volume-penalization approach of Arquis and Caltagirone [2] a Darcy drag term is added to the
Navier—Stokes equations such that the velocity is penalized towards zero inside an obstacle. It is analytically
shown that by increasing the penalization strength the penalized Navier—Stokes equations converge towards
the Navier—Stokes equations with no-slip boundary conditions (see Refs. [1,5]). Angot and co-workers [1] also
present numerical results for 2D flow around a square obstacle, which confirms that the method is indeed con-
verging. The maximum value of the Reynolds number in their simulations, based on the main stream velocity
U,, the size of the square L, and the kinematic viscosity v, is Re = % = 80, which is relatively low. Paccou
et al. [33] also proved numerically and theoretically convergence of a volume-penalization approach for a fully
hyperbolic problem, i.e. the linear wave equation.

Kevlahan and Ghidaglia [24] tested the suitability of a Fourier spectral scheme with volume-penalization
for the problem of flow around a cylinder at a substantially higher Reynolds number, Re = @ = 1000, based
on the main stream velocity and the diameter D of the cylinder. A drawback of the penalization technique is
the formation of steep velocity-gradients inside the porous object, that can deteriorate the spectral conver-
gence rate to first order. This effect is generally referred to as the Gibbs phenomenon, visibly present by wig-
gles in both the Fourier Galerkin and collocation projection of any piecewise continuous function.
Nevertheless, the Gibbs oscillations present in the simulations of Kevlahan and Ghidaglia [24] and Schneider
[34] seem to be stable during the flow evolution. This demonstrates that it is possible to perform stable and
reasonably accurate Fourier spectral computations of incompressible viscous flow past an arbitrary shaped
object. We think it is interesting to extend this analysis using the very challenging dipole-wall collision exper-
iment at high Reynolds numbers as a test problem. An important issue is to fully quantify the role of the Gibbs
effect on the flow dynamics: is it possible to recover higher-order accuracy of the Fourier spectral scheme?
Here, we follow some recent developments in the theory and application of Fourier spectral methods on dis-
continuous phenomena, see for an overview the work of Gottlieb and Gottlieb [18]. These advances indicate
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that high-order information can be recovered from stable Fourier spectral computations. We use a high-order
recovery technique proposed by Tadmor and Tanner [40]. They propose a mollification procedure, which
involves a subtle process of cancelling nearby Gibbs oscillations to obtain an accurate reconstruction of
any piecewise continuous function in the physical domain. A strong advantage is that tuning of the parameters
is completely avoided. Furthermore, the implementation is quite straightforward and thus relatively easy to
optimize from a computational point of view.

Besides the Fourier spectral technique we will consider the coherent vortex simulation (CVS) method with
volume-penalization using an adaptive wavelet method. The main idea is to split the flow into two orthogonal
parts, a coherent contribution and an incoherent background flow, using a nonlinear wavelet filtering of vor-
ticity [15]. It is shown by Beta et al. [3] that the coherent part is mainly responsible for the nonlinear dynamics,
while the incoherent background can be considered as decorrelated or structureless. Therefore, Farge and
Schneider [16] propose to model its influence on the coherent flow statistically and only solve by direct numer-
ical simulation the few wavelets coefficients that describe the coherent part of the flow. This makes the CVS
method potentially fast in terms of CPU time, while the memory requirements can strongly be reduced.
Schneider and Farge successfully applied the CVS method to different flow problems such as flow around a
cylinder [36], 3D turbulent mixing layers [37,38] and present some preliminary results (containing aliasing
errors) for a dipole-wall collision [35].

In this paper, we will continue with a more detailed comparison of the CVS and Fourier spectral results
with a high-resolution benchmark computation conducted with a Chebyshev—-Fourier and Chebyshev spectral
method for 2D flow with no-slip boundary conditions in one or two directions, respectively (see Refs. [25,8]).
We start with a description of the volume-penalization technique and formulate different approaches to treat
the Darcy drag term in Fourier spectral schemes and in CVS. Then the convergence of these schemes and the
penalization error will be analyzed in terms of isovorticity lines, a global measure of the error in the vorticity
and the total kinetic energy and enstrophy of the flow.

2. Volume-penalization
2.1. The model equation

Consider an incompressible fluid of unit density, p = 1, in a domain Q; € R?, which evolves according to
the Navier-Stokes equations

du+ (u-Viu+Vp—vAu=0 in Q x[0,7] (1)
and the continuity condition
V-u=0 in Q x [0,7], (2)

where u = (u(x,?), v(x,?)) is the Eulerian velocity, p = p(x, ) the scalar kinetic pressure and v the kinematic
viscosity. An impermeable, stationary geometry can be defined by setting the normal velocity component
to the wall to zero. The tendency of a fluid to stick to the boundaries 09 is usually modelled by removing
the tangential velocity component relative to the wall. The combination of these boundary conditions on each
component of the velocity defines the no-slip boundary condition, which read for a stationary geometry,

u(x,t) =0, xe€0Q, te€]0,T], (3)

which is essentially a Dirichlet boundary condition for u. Note that Eq. (1) contains second-order derivatives
so two boundary conditions are required for the existence of a unique solution.

In the volume-penalization approach fluid—wall interaction is no longer described by demanding the no-slip
boundary condition (3). The basic idea originating from Arquis and Caltagirone [2] is to embed the flow
domain in a larger domain Q, such that Q; = Q\ Q,, where Q represents the volume of porous objects.
The interaction with the porous objects is modelled by adding a Darcy drag term to the Navier-Stokes equa-
tions locally inside Q,, which yields the penalized Navier—Stokes equations

1
ou+ (u-Viu+Vp—vAu+-Hu=0 in Q x [0,7], 4)
€
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where the mask function H is defined as

{1 if x € Q,,

0 if xe Q.

Fig. 1 shows some examples of possible geometries. In this study, we model a channel with two no-slip bound-
aries and two periodic boundaries and the square bounded geometry with four no-slip boundaries by choosing
the mask function shown in Fig. 1b and c, respectively. The continuity condition accompanies the penalized
Navier—Stokes equations in Q. On the boundaries of the computational domain 0€2 one can consider different
boundary conditions. Here, we have chosen for the periodic boundary condition on 0%, such that Fourier
spectral methods can be applied. For convenience the penalized Navier—Stokes equation (4) can be rewritten
in velocity—vorticity formulation by taking the curl of Eq. (4) and applying several vector identities to arrive at

6,w+(u~V)w—vAw+1V><Hu:0 in Q x [0, 7], (5)
€

where @ = (V xu) - e, is the vorticity. Note that the velocity—vorticity formulation is scalar-valued in two
dimensions. The volume of the obstacles can be interpreted as a porous medium with permeability e. As a con-
sequence the flow inside Q; induces a small and time-dependent velocity inside the obstacles and thus on the
boundaries 0. The flow inside the obstacle Qg can be matched with the flow inside Q; by demanding conti-
nuity of both velocity and surface stress. Note that Darcy drag can be considered as a volume force such that
the surface stresses t in the penalized Navier-Stokes equation (4) can be expressed in the usual way, i.e.
7 =n" o, where n is the outward unit normal on 09, and the stress tensor ¢ = v(Vu + Vu’) — pI. This implies
together with demanding continuity that the velocity is at least C' and the pressure C° on 9€; (see Ref. [5]).

2.2. Convergence and regularity

It has been shown rigorously by Angot et al. [1] that the solutions of the penalized Navier—Stokes
equations converge towards the Navier—Stokes solution in Q; with an order ¢'/* error bound. Their numer-
ical simulations show, however, a better convergence indicating that the analytical upper bound for the
error is not sharp enough. Later, Carbou and Fabrie [5] improved the analytical error estimate inside
the flow domain by using a singular perturbation technique. They obtained formal expansions for the veloc-
ity and pressure in terms of /e inside Q. In addition, they derived that the upper bound of the penalization
error is order /e in the L, sense of the velocity and velocity gradients with respect to the Navier—Stokes
solution in Q; with the no-slip boundary condition. Furthermore, they found C' continuity in the larger
domain Q of the velocities determined by the penalized Navier-Stokes equations. The C' continuity of
the /e and higher-order expansion terms is achieved by the introduction of an asymptotically thin bound-
ary layer proportional to +/ve inside the obstacle.

obstacles channe c) square
a) obstacl b) ch 1

Fig. 1. Decomposition of a square computational domain € into porous objects Q; (dashed) and flow domain Q; (white).
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A remarkable result is, however, that the boundary layer components are only required to determine the
order € and higher-order terms in the asymptotic expansion of the velocity and pressure inside ;. Therefore,
it might be expected that if the spatial resolution is too low to resolve the details of the asymptotic boundary
layer, one is still able to compute the solution of the penalized Navier-Stokes equations in Qr up to order /e
accurate. Inside the obstacles (dist(x, 0€) > \/ve) the leading order expansion term for the velocity is order €
and for the pressure order zero. These terms can uniquely be determined, again without computing the bound-
ary layer solution. The zeroth-order part of the pressure follows a Laplace equation that can be solved by
applying a matching condition on 0€g. The order e part of the velocity can then be determined by solving
a Darcy relation involving the zeroth-order part of the pressure. An advantage of the small skin depth is,
on the other hand, that the obstacles can be relatively thin. This implies that not many grid points are required
to represent a wall on a Cartesian grid and for adaptive methods, such as CVS, only the flow near the surface
of the porous objects needs to be calculated.

3. Numerical methods
In this section, we present an overview of the different numerical schemes.
3.1. Fourier—Galerkin method with an explicit treatment of Darcy drag

For the sake of simplicity, we write Eq. (5) as
0,0 — vAw = N (), (6)
where
N = —(u-V)w—éV x Hu.

For the exact treatment of the diffusion term, we first consider the homogeneous equation, i.e., NV = 0. The
exact solution can be expressed as

o(x,1) = o(x, 1) exp(vid), (7)

where exp(vtA) is the semi-group of the heat-kernel. By using variation of constants the inhomogeneous equa-
tion, i.e., N' # 0 can be written in the form

O {wexp(—vid)} = N(w)exp(—vtd), (8)

See e.g., Ref. [34] for details. The vorticity and velocity are expanded with a doubly truncated Fourier series as
a trial basis,

N/2—-1  N/2-1
oy(x, )= Y Y a(t)exp(ik - x), (9)

ky=—N/2 ky=—N/2

where k = (k, k,) and @(¢) denotes the continuous Fourier expansion coefficients of w(x, ¢), which are defined
for simplicity on x € [0,2n]* as

ax(t) = # /w(x, t) exp(—ik - x)dx. (10)

Note that the trigonometric polynomials are complete for functions in L,(Q). Thus it is, in principle, possible
to make an expansion of functions with Dirichlet boundary conditions on 022 as well. However, the conver-
gence of the Fourier series expansion is only guaranteed in the L,-norm and not in the pointwise sense. Note
that setting a Dirichlet boundary condition actually requires convergence in the pointwise sense. Therefore, it
is not possible to directly take into account the Dirichlet boundary condition on the domain boundaries. One
thus has to apply immersed boundary techniques like, for example, the volume-penalization method in this
study and consider periodic boundary conditions.
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By virtue of the continuity condition (2) the velocity u,(¢) can be computed from @ (¢),
. 1(kye, — ke
i) = e K, (1)

where k* = k - k. By substitution of the expansions into Eq. (8) and taking inner products with the Fourier

system as test functions as well, we follow a Fourier—Galerkin approach yielding an evolution equation for
each k

d{ o exp(vi*t)} = K () exp(vit), (12)
where

K = [ Vo + 2 o], 2 ) (13)

This K term is evaluated by collocation in the physical domain where aliasing is avoided by applying the zero-
padding technique introduced by Orszag [32], generally referred to as the 2/3-rule (see, for details, Ref. [4]).
Furthermore, it is important to realize that in the Fourier—Galerkin approach the precise form of the contin-
uous equation in this case the velocity—pressure (4) and velocity—vorticity (5) formulation yield identical algo-
rithms. The computation of K involves Fourier projections of the discontinuous restricted velocities Hu and
Hv, which might affect the convergence of the scheme.

A third-order extrapolated backward differentiation (BDF3) formula [22] is applied for the time discretiza-
tion of Eq. (12)

Zahw”“ "exp(—vi?hot) = —51‘2[3,, Oty exp(— vkt hét). (14)

The values of the coefficients oy, and f3,, which can be found in Table 1, are given by the backward differen-
tiation scheme and extrapolation, respectively. We chose this time scheme for the good stability results ob-
tained by Kress and Lostedt [27]. They considered backward difference time schemes with fourth-order
finite differences for the spatial discretization of the incompressible Navier—Stokes equations with no-slip
boundaries in a straight channel. Note that the treatment of viscous diffusion in Eq. (14) is exact. The accuracy
and stability restrictions of the time scheme solely arise from the nonlinear K term.

3.2. Fourier collocation with an implicit treatment of Darcy drag

A drawback of the explicit treatment of the Darcy drag is that for stability the time step has to be of the
same order as €, because the problem is stiff. Recall that the accuracy of the penalized Navier—Stokes equa-
tions with respect to the no-slip boundary condition converges relatively slow with order /e. Therefore, it
might be necessary to decouple the time step from e, such that the time step is only limited by the CFL
number. Kevlahan and Ghidaglia [24] used a GMRES Krylov subspace technique in an explicit time scheme
for this purpose. To achieve a stiffly stable third-order time scheme, without additional memory or compu-
tational requirements we consider an alternative method. It is based on a collocation approach of the penal-
ized Navier—Stokes equations in primitive variables (4) at the grid points x = (2nn,/N, 2nn,/N) where n, and
n, range from 0,...,N — 1. The grid values of uy and py are now related to the discrete Fourier coefficients
defined as

L
N?

=

—1

=

—1

py(x) exp(—ik - x) (15)
0

Pk =

0 ny,

Table 1
Coeflicients for third-order extrapolated backward differentiation (BDF3)

do oy %) o3 B B2 B3
11/6 -3 3/2 -1/3 3 -3 1
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such that

N/2-1  NJj2—1

= > Y hrexplik-x) (16)

ky=—N/2 ky=—N/2

due to the orthogonality of the Fourier basis. A third-order extrapolated BDF scheme with exact differenti-
ation of the diffusion term can be expressed as

3

OCOU7V+1 +5tL n+1 Z 5tﬁh n+1 h) +Cxlu}z]+l h)ehéth (17)
h=1

V oy =0 (18)

where Gy = (uy - V~)uN + V~pN, Ly = H uy and a tilde stresses that collocation derivatives are used. The same
values of the coefficients o; and f; are apphed as for the explicit time scheme, see Table 1. Thus, the Darcy drag
is now evaluated with backward differentiation instead of extrapolation. The error Vu — (Vu) y 1s of the same
order as the truncation error of the Fourier-Galerkin derivative of u (see Ref. [4]). In the following, we will
neglect this error and suppose that interpolation and differentiation commute, i.e., Vu = (Vu),, for simplicity.
To keep the velocity field solenoidal with respect to the collocation derivatives we demand,

V.- Gy=0, (19)
such that the Helmholtz decomposition of G only contains a rotational part,

Gy =V x A. (20)
Taking the curl on both sides of Eq. (20) yields,

V x [(uy - Vuy] =V x (V x A) = V(V - A) — V2A. (21)

The convolution sum on the left-hand side is evaluated by using the 2/3 rule to avoid aliasing errors. In
transform space it is then straightforward to obtain the Fourier expansion coefficients of 4. In addition, it
is possible to obtain Gy via the Helmholtz decomposition (20). This procedure finally yields the following
algorithm

GN(uN)eh&th _ Z l(kye-"k_z kxe}’) [("N . ﬁ)wN]ke—vkzhdH—ik-x. (22)

kez?

The penalization parameter e can be chosen independent from the time step without additional FFT’s (3 for-
ward and 4 backward). Furthermore, it is not necessary to perform a Fourier expansion of the discontinuous
restricted velocities Hu and Hv. Therefore, the only convergence limitations appear from the regularity of the
penalized Navier—Stokes equations considered in Section 2.2.

3.3. Coherent vortex simulation

Coherent vortex simulation (CVS) introduced by Farge and co-workers [15,16] is a new method to compute
turbulent flows. It is based on the wavelet filtered Navier—Stokes equations, whose solutions are computed in
an adaptive wavelet basis. The wavelets are dynamically selected to track the flow evolution with a reduced
number of modes (cf. [37,16,36,38]). The success of this methodology hinges on the ability of the wavelets
to achieve a significant reduction in the number of modes needed to describe the flow evolution. In the follow-
ing, we briefly summarize the adaptive wavelet method to solve the two-dimensional Navier—Stokes equations
in velocity—vorticity formulation (5).

In the CVS computations, we employ a semi-implicit time scheme of second-order [17], i.e., an Euler-Back-
wards scheme for the diffusion term and an Adams—Bashforth scheme for the advection and penalization term.
The explicit treatment of the advection and penalization terms implies a limitation of the time step size to
guarantee stability, i.e. the time step has to satisfy the CFL condition and also has to be smaller than the
penalization parameter. Discretizing (6) therewith we obtain
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4 1
(7 —vA)o" = gyw” — gyw”’l +NQw" — ") (23)
Alpnﬂ _ wn+l and un+1 — lePnJrl, (24)

where y = 2/(301), V= (—9,, 0y) and ¥ denotes the stream function. Hence in each time step two elliptic
problems have to be solved and a differential operator has to be applied. Formally, the above equations
can be written in the abstract form Lu = f, where L is an elliptic operator with constant coefficients, corre-
sponding to a Helmholtz type equation for @ with L = (y — vA) and a Poisson equation for ¥ with L = 4.

For the spatial discretization we use a Petrov—Galerkin scheme. The trial functions are orthogonal wavelets
and the test functions are operator-adapted wavelets. To solve the elliptic equations Lu = fat time step 7" we
develop «"Vinto an orthogonal wavelet series, i.e., u"!' = ;‘H'j“zp ,» where A = (j, iy, iy, d) denotes the multi-
index containing scale j, space iy, i, and direction information . Requiring that the residuum vanishes with
respect to all test functions 0/, we obtain a linear system for the unknown wavelet coefficients #}"" of the solu-
tion u:

Do w L 0) = (. 0). (25)

The test functions 6 are defined such that the stiffness matrix turns out to be the identity. Therefore the solu-
tion of Lu = f reduces to a change of the basis, i.e., u""' = (f, 0,)y,.

The right-hand side f can then be developed into a biorthogonal operator adapted wavelet basis
f =300, with 0, = L* 'y, and p; = Ly, (* denotes the adjoint operator). By construction 6 and u
are biorthogonal, (0,, ;) = 6, . It can be shown that both have similar localization properties in physical
and Fourier space as has y and that they form a Riesz basis [17].

To get an adaptive space discretization for the problem Lu = f'we consider only the significant wavelet coef-
ficients of the solution. Hence, we only retain coefficients &} which have an absolute value larger than a given
threshold ¢, i.e., |#}| > & The corresponding coefficients are shown in Fig. 2 (white area under the solid line
curve). The threshold ¢ is not constant in time. It depends on the enstrophy Z (35) of the flow in the following
way

&(t) = 80/Z (1) / Z(to). (26)

with a constant &y. This choice is motivated for decaying flows to maintain the relative error in the enstrophy.

To be able to integrate the equation in time we have to account for the evolution of the solution in wavelet-
coefficient space (indicated by the arrow in Fig. 2). Therefore, we add at time step #” the local neighbors to the
retained coefficients, which constitute a security zone (grey domain in Fig. 2). The equation is then solved in
this enlarged coefficient set (white and grey region in Fig. 2) to obtain #;"'. Subsequently, we threshold the
coefficients and retain only those with |#!*!| > & (coefficients under the dashed curve in Fig. 2). This strategy
is applied in each time step and allows hence to track automatically the evolution of the solution in scale and

space.

‘

i >E

Fig. 2. lustration of the dynamic adaption strategy in wavelet coefficient space. The vertical axis represents scale and the horizontal axis
represents 1D space information denoted by j and i, respectively, in the multi-index 4. The white area under the solid curve represents the
wavelet coefficients at ¢, the gray region is the security zone and the dashed region represents the distribution of the wavelet coefficients at
the new time-level ¢, .
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The nonlinear term f{v"), where the wavelet coefficients of #" are given is evaluated in physical space on a
locally refined grid. This approach is similar to the pseudo-spectral evaluation of nonlinear terms used in
spectral methods, and therefore this method is called pseudo-wavelet technique. The prerequisites, however,
are that fast adaptive wavelet decomposition and reconstruction algorithms are available. This means that
functions can be reconstructed on a locally refined grid from a sparse set of their significant wavelet coef-
ficients and vice versa which are given in [17]. The method can be summarized as follows: starting from the
significant wavelet coefficients of u, i.e., |#1;| > &, one reconstructs u on a locally refined grid, u(x;). Then one
can evaluate f{u(x;)) pointwise and the wavelet coefficients of f can be calculated using the adaptive decom-
position to get ]7; .

Finally, we have to calculate those scalar products of the r.h.s f with the test functions 6, to advance the
solution in time. We compute #; = (f,0,) belonging to the enlarged coefficient set (white and gray region
in Fig. 2). In summary the above algorithm is of O(N?) complexity, where N denotes the number of wavelet
coefficients used in the computation per spatial direction.

3.4. Chebyshev spectral methods

Pseudospectral simulations were performed with numerical codes developed by Clercx [8] and Kramer [25]
for the square bounded and a periodic channel geometry, respectively. For the square bounded domain the
flow variables are expanded by Chebyshev polynomials in both directions. The solver of Kramer [25] is very
similar to the solver of Clercx [8]. The main difference is that a Fourier expansion of the flow variables in the
periodic direction has been applied. In the non-periodic direction the flow variables are represented by Cheby-
shev expansions as well. An advantage of the latter approach is that it is easier to achieve high-resolution com-
putations both in the direction normal and tangential to the wall.

On the domain Q, the vorticity problem can be written in the dimensionless form as put forward by Daube
[12]

Lyt (u-Vio=2Ao in Q x[0,7]
(-,0) = wy in Q (27)
o= (Vxu)-e, on 00 x [0, 7]

where wy is the initial datum. The integral-scale Reynolds number is defined as Re = UW/v (where U is a char-
acteristic velocity of the flow, I the half width of the domain and v the kinematic viscosity of the fluid). The
vorticity problem (27) has to be solved in combination with the Poisson problem

{Au:eszw in Q x [0, 7],

28
u=0 on 00 x [0, 7], (28)

with e the unit vector perpendicular to the plane of the flow. Note that for the periodic channel geometry the
no-slip boundary condition is only applied in the non-periodic direction. The time discretization in the square
bounded geometry of the vorticity equation (27) consists of the second-order explicit Adams—Bashforth
scheme for the advection term and the implicit Crank—Nicolson procedure for the diffusion term. For the peri-
odic channel geometry a third-order backward difference scheme is applied for diffusion and extrapolation for
the advection term.

4. Recovery of higher-order accuracy of Fourier schemes

Recall that the C'(Q) and C°%(Q) continuity of respectively the velocity and pressure of the penalized
Navier—Stokes equations are enforced by an asymptotically thin boundary layer. On the other hand, continu-
ity of the higher derivatives is guaranteed in Q; and € (see Ref. [5]). Thus, in the limit ¢ — O the penalized
solution converges to a piecewise continuous function. This might be a problem for Fourier spectral methods
since the L, convergence of both the continuous (9) and discrete Fourier expansions (16) depends on the glo-
bal smoothness of a function. As a consequence the uniform convergence is exponential for analytic functions,
but a localized discontinuity, on the other hand, makes the Fourier projection suffer from oscillatory behavior
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known as the Gibbs phenomenon. The uniform convergence is lost in the neighborhood of a discontinuity and
the L, convergence rate drops to first-order. Fortunately, the convergence rate for piecewise continuous func-
tions in terms of moments against any analytic function ¢(x) (or more rigorously stated in terms of Sobolev
norm of negative order) is still excellent,

0 ) — £} b de| < K (29)

for some constant K and a constant r between zero and one. The only requirement is that f belongs to the
space L, (see Ref. [4] for details). This demonstrates that nearby Gibbs oscillations cancel very rapidly in
the weighted mean ¢(x) being any smooth function.

Inspired by estimate (29) several techniques have been proposed to recover the pointwise convergence for
the Fourier projections of piecewise continuous data. In this paper, we follow the so-called “mollification”
approach introduced by Gottlieb and Tadmor [19] and later improved by Tadmor and Tanner [40]. It exploits
the fast cancellation of the Gibbs oscillations and offers a robust, efficient and general purpose procedure for
accurate reconstruction of piecewise continuous data, where tuning of the parameters and roundoff errors are
completely avoided.

The basic idea is to equip the analytic weight function ¢(x) in Eq. (29) with two parameters p and 0, such
that it is charged to find a balance between localization of the function f'and cancellation of neighboring Gibbs
oscillations. To simplify notation we discuss the mollification process of the continuous Fourier expansion in
ID. It is however straightforward to apply the algorithm in 2D. The procedure can be expressed as a convo-
lution integral of the form,

2n

R[fv](x) = ¢, X f(x) = i Sn(X),p(x — X) dx, (30)
where the mollifier is defined as ¢, o(z) = (1/0)p(z/0)D,(z/0), with the Dirichlet kernel
el f (£0,2m,.
D) =1 | (31)
o if {=0,2x,...
and a piecewise C™° weight function
o= { & i< (32)
0 if [{| > m.

The number of near-vanishing moments of the mollifier and thus the number of cancellations is controlled with
p- The parameter 0 handles the support ]—0mr, On[ and should be as large as possible to allow a necessary amount
of cancellation in the convolution integral (30). Due to the requirement of localized regularity of the function
fitis not allowed to incorporate a discontinuity. For optimal convergence the support of the mollifier should be
0 = max(d(x)/=, 21/ N), where d(x) represents the distance to the nearest jump discontinuity. Note that due to
the symmetry of the mollifier it is not possible to use the mollification procedure on the discontinuity itself. An
optimal choice for p depends in addition on the support of the mollifier, p(x) = x0(x)N/2, where « is an
arbitrarily chosen parameter between 0 and 1. The same value x = 0.5 is chosen as in the numerical validation
of the method presented in Ref. [40]. In order to obtain finite-order convergence in a small region of O(1/N)
around a discontinuity Tadmor and Tanner [40] have introduced normalization procedures that remove the
higher-order moments of the mollifier. As a result, exponential convergence in the pointwise sense is recovered
from the Fourier projection sufficiently far from a discontinuity. At a distance of O(1/N) fourth-order conver-
gence is achieved and at least second-order convergence appears up to the discontinuity. In Ref. [40] an equiv-
alent procedure is developed for the discrete Fourier expansion, with similar convergence results.

In this study, the mollification procedure is only applied as a postprocessing tool. A similar approach,
although with a Gegenbauer postprocessing tool (see Ref. [20]), is successfully performed by Shu and Wong
[39] on development of shocks in the solution of the Burgers equation and also in the 2D Euler equations
by Don [14]. It should be emphasized that these are a posteriori results due to the lack of full theoretical
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justification. Gottlieb and Gottlieb [18] explain these results, however, by going back to the argument of Lax
[28] on the suitability of Fourier spectral schemes on shock development in nonlinear hyperbolic systems. Nev-
ertheless, it is not a priori known whether postprocessing can successfully recover the solution of the penalized
Navier-Stokes equations as well.

5. Dipole-wall collision benchmark computation

The numerical simulations of Clercx and Bruneau [6] indicate that it is extremely difficult to obtain mode or
grid-convergence for a dipole that collides with a no-slip boundary using a Chebyshev pseudospectral method
or finite differences. Here, we focus on the convergence properties of a normal dipole-wall collision, i.e. the
translation of the dipole being perpendicular to the wall, at an integral-scale Reynolds number Re =
Y% = 1000, based on the total kinetic energy of the flow (determining the average velocity U) and the half
width W of the domain. Note that this value of Re is similar as in the 2D decaying turbulence simulations
in square bounded domains by Clercx and Nielsen [9]. They used (initial) integral-scale Reynolds numbers
varying between 5000 and 20,000, but the Reynolds number based on the vortex size in these runs was always
in the range 700-2500. Therefore, the dipole-wall experiment at Re = 1000 can be seen as a novel test case to
explore the possibility of pursuing DNS of wall bounded turbulence.

5.1. Setup and initial condition

The flow domain Qf is defined as
Q={xeR|-1<x<1,-1<y<1}.

The initial (scalar) vorticity field oy and velocity field uy should vanish at the boundary, which guarantees ab-
sence of artificial boundary layers due to enforcing the no-slip condition at = 0. In order to satisfy these con-
straints, two equally strong, oppositely signed, isolated monopoles are put close to each other near the center
of the container. The vorticity distribution of the isolated monopoles is chosen as

wo = (1 = (r/ro)*) exp(—(r/r)*), (33)
with r = (x* + yz)l/ 2 the distance from the center of the monopole, ry its dimensionless ‘radius’ (at which the
vorticity changes sign) and w, its dimensionless extremum vorticity value (in r = 0). In the present simulations,
the exact numerical value for the radius of the monopoles is rg = 0.1, and w, = 299.528385375226. With this
value of ry the vorticity at the boundary (at r = 1) is virtually zero, as can be concluded by substituting the
numerical value of the ratio r/ry in Eq. (33).

This value of w, is determined by the condition that the total kinetic energy of the dipolar flow field

E(t):% /_ | / luz(x,t)dxdy, (34)

is normalized to E(0) = 2 for all runs. As a consequence, both U and the halfwidth of the domain W are fixed
and the Reynolds number is defined as Re = UW/v. The total enstrophy of the dipolar flow field is defined by

Z(t):% [ 1 [ 1 @*(x, £)dxdy, (35)

with Z(0) ~ 800. The exact numerical values for the initial position of the two isolated monopoles is {(xy, 1),
(x2,¥2)} = {(0,0.1), (0,—0.1)}. The initial datum wy = (uo, vy) for the integration of the Navier-Stokes equa-
tions in primitive variables can be derived straightforwardly for a couple of isolated monopoles, satisfying
Eq. (33) and is then given by:

w =~ 0 = 1) exp(—(r /re)’) + 3oty — ) exp(~(ra/a))

1

1 (36)
=5 || (x = x1) exp(— (71 /r0)’) — 2 e (x = x2) exp(—(r2/r0)"),
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with 72 = (x —x;)> + (v —»,)> and 72 = (x — x,)” + (y — y,)”. This initial datum also proves that the no-slip
condition is sufficiently well guaranteed by our choice ry = 0.1 (note that e (770" ~ e~100 ~ 107*).

5.2. Chebyshev—Fourier and Chebyshev benchmark computations

Fig. 3 gives an overview of the normal dipole-wall collision obtained by a Chebyshev—Fourier benchmark
computation, using 1024 Chebyshev modes and 2048 active Fourier modes with a time step 8t = 107>. As the
dipole impinges the wall at # ~ 0.3 relatively thin boundary layers are formed containing oppositely-signed
vorticity compared to the approaching (primary) monopoles. In addition high-amplitude vorticity filaments
are stripped from the boundary layers yielding two new (secondary) vortex cores, as can be seen in the vor-
ticity contour plot at ¢ = 0.4. The trajectories of the new vortices are strongly curved resulting in a second col-
lision at =~ 0.6. For ¢ = 0.8 there is no appreciable production of vorticity at the no-slip wall anymore while
the vorticity already present is slowly dissipated. It is found by Clercx and Bruneau [6] that an extremely fine
discretization is required for accurate quantitative results. Especially for simulations with long integration
times compared with the time #; of the primary collision. In particular underresolved high-amplitude vorticity
patches near the no-slip wall (visible in Fig. 3) can possibly deteriorate the accuracy in course of time.

To analyze the quality of the Chebyshev and Chebyshev-Fourier computations we analyze the relative
error in the vorticity

5y = [w(N) — &(Nmax) [l 2
N> (N max ) || ’

(37)
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Fig. 3. Contour plots of the vorticity field of a normal dipole-wall collision with Re = 1000. In this simulation 1024 Chebyshev modes are
used perpendicular to the wall and 2048 Fourier modes for the periodic channel direction. The time step is given by 6z = 10>, Contour
levels are drawn for —270, ..., —50, —30, —10, 10, 30, 50, ..., 270.



G.H. Keetels et al. | Journal of Computational Physics 227 (2007) 919-945 931

where w(N) is the approximation of the vorticity with resolution N and N, is the maximum N that is avail-
able. The highest-resolution computations that are performed for the square bounded domain have 640
Chebyshev modes in both directions. For the periodic channel domain a maximum of 1024 Chebyshev modes
for the non-periodic direction and 2048 active Fourier modes is used for the periodic direction. To estimate the
error of the computations lower resolution computations are performed as well. For the square bounded case
a second computation is conducted with 512 Chebyshev modes in both directions and the periodic channel
with 512 Chebyshev modes versus 1024 active Fourier modes. The time step is fixed for all computations,
i.e., 0t =107". It is found that the truncation error dy is less than 1.2 x 10~ for the square bounded case.
Clercx and Bruneau [6] have shown that the truncation error of the Chebyshev scheme decays exponentially
with N. They considered the dipole-wall experiment for Re = 1250 and Np.x = 512 in both directions. The
order of magnitude of the truncation error observed here for Re = 1000 and N,,,x = 640 is consistent with
the results of Clercx and Bruneau [6]. The error J, for the periodic channel geometry is less than
8.2x 107> for r < 2.0. Therefore, the high-resolution computations in both geometries can be considered as
sufficiently accurate benchmark computations.

6. Convergence analysis of Fourier schemes

To simulate the dipole-wall collision with volume-penalization the flow domain € defined in Section 5.1 is
embedded in the channel geometry of Fig. 1b. The computational domain Q is defined as

Q={xcR-1<x<1,—(1+6,) <y<(1+6,)}, (38)

where the wall thickness J,, is chosen such that there is a set of grid points on the interface between the fluid
and the solid (porous) material. It is found that decreasing d, from 10% down to 1% of the channel width does
not change the computational result significantly. To reduce the number of grid points inside €, as much as
possible the wall thickness J,, is fixed to about 1% of the domain size for the Fourier spectral simulations pre-
sented here.

Due to the continuity restrictions of the solution of the penalized Navier—Stokes equations (see Section 3)
on 0Q it can be expected that the Fourier projections of the different flow variables will suffer from the Gibbs
phenomenon. The key question is, however, whether the low convergence rate of the Fourier projection will in
addition prevent proper convergence of the Fourier spectral scheme or that higher-order accuracy can be
recovered by the mollification technique proposed by Tadmor and Tanner [40] (or alternative techniques such
as high-wavenumber filtering [29] and Gegenbauer postprocessing [21]).

6.1. Gibbs oscillations

Fig. 4. presents the isolines of the vorticity obtained by the Fourier spectral solver with 1364 active Fourier
modes in both directions using ¢ = 2.5 x 10> and implicit treatment of the Darcy drag with a time step of
ot = 107°. As the dipole impinges the wall strong oscillations in the vorticity isolines become indeed apparent,
as is evident from Fig. 4. Note that only one-half of the domain is shown because of the symmetry of a normal
dipole-wall collision. The oscillations are more pronounced near the wall than in the interior of the flow
domain. An important observation is that the wiggles automatically disappear as the vortex moves into the
interior of the flow domain, ¢t =0.5 in Fig. 4d. In addition Fig. 5 shows the mollified results obtained by
the recovery method of Tadmor and Tanner [40] applied to the computational output presented in Fig. 4.
It reveals strong correspondence with the Chebyshev—Fourier benchmark computations. This indicates that
the observed oscillations do not have a serious dynamical effect on the evolution of the dipole-wall collision.

6.2. Truncation error

In order to investigate the scaling behavior of the truncation error the simulations are compared with the
highest available resolution of 2730 x 2730 active number of Fourier modes (computed with 4096 x 4096
Fourier modes to prevent aliasing errors), while the penalization parameter is fixed for all computations at
a value of € =2.5x 107, This value is chosen such that it is feasible to test both the implicit and explicit
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Fig. 4. Contour plots of the vorticity field of a normal dipole-wall collision with Re = 1000 using 1364 x 1364 active Fourier modes,
6t =107 and ¢ = 2.5x 107> with an implicit scheme. Contour levels are drawn for —270, ..., —50, —30, —10, 10, 30, 50, ..., 270.

implementation of the Darcy drag efficiently. Note that for the explicit implementation the time step has to be
in the same order as the penalization parameter. As a consequence, a smaller value for e would result in a blow
up of the amount of wall-clock time. On the other hand, e = 2.5 x 10~ is small enough to have an acceptable
correspondence with the Chebyshev—Fourier benchmark computation, which satisfy the no-slip condition
within machine-precision accuracy.

The mollification procedure of Tadmor and Tanner [40] involves a symmetric mollifier that gives second-
order accuracy in the immediate vicinity of a discontinuity (the wall in this case) and higher-order accuracy
when moving away from the discontinuity. Therefore, we decompose the domain in an interior part €, rang-
ing from x =[—1,1]and y =[—0.99,0.99] and a boundary zone. Only in the interior part high-order recovery
of the Fourier projection can be expected for all the resolutions considered here. Fig. 6 demonstrates the con-
vergence behavior in the boundary zone. A cross-section of the viscous boundary is presented at the point
where the vorticity on the wall has a maximum. Fig. 6a shows that the amplitude of the oscillations in the
Fourier projection decreases slowly by increasing the resolution. The vorticity value on the wall reflects a
well-known convergence property of Fourier series

132,1,010 (DN(X> _ w(x*) ;—w(x+) ’

(39)

where x_ and x4 denote the limits from below and above x, respectively. Since the vorticity inside the obstacle
is negligible (see Section 2.2) the projection wy underpredicts the vorticity on the wall by a factor two. Recall
that C° continuity of the vorticity is enforced by an asymptotically thin boundary layer inside the obstacle
proportional to y/ve. The resolution of the computations is, however, too low to resolve this boundary layer.
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Fig. 6. Cross-section of the vorticity along the line x =0.083 at 7 = 0.35, Chebyshev—Fourier benchmark result (dashed) and implicit
scheme (solid). 6t = 107>, e = 2.5 x 107>, with different number of active Fourier modes: 5122 (open circles), 682 (stars), 1364 (plus signs
and 27307 (closed circles).
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where N represents the simulations conducted with less than 2730 active Fourier modes in both directions. The
time step is fixed for all computations, i.e., 6t = 10~ consistent with the CFL condition of the high-resolution
computation with 2730 x 2730 active Fourier modes. The convergence rate of the Fourier projection presented
in Fig. 7 depends on the time considered. During the collision process, in particular at t =0.3, t =0.35 and
t = 0.4, the error of the Fourier projection only shows first order decay, while at some later time, for example,
t = 0.5 the error decays faster. The error of the mollified vorticity fields shows, however, fast decay at least
proportional to N~ for all times. From these observations it is difficult to determine the exact value for
the order of the scheme. Especially, because it is not sure how the mollified error is behaving with either a
specific power law or exponentially. Note that the slope increases when moving towards the higher end of
the spectral range considered here. This might indicate that the error of the postprocessed results behaves
exponential or that higher-order convergence appears after reaching a specific resolution related to the thick-
ness of the viscous boundary layer. At ¢t = 0.5 the mollification procedure does not improve the scaling of the
truncation error, which can be related to absence of strong oscillations in the vorticity isolines in Fig. 4d. The
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Fig. 7. Truncation error 6, versus number of active Fourier modes N. Explicit (solid) and implicit (dashed) implementation of Darcy
drag. The error of the Fourier projection (stars) and the mollified result (plus signs).
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schemes of Sections 3.1 and 3.2 with an explicit and implicit treatment of the Darcy drag respectively, show a
similar decay of the truncation error as can be deduced from Fig. 7.

6.3. Long-time integrations and global quantities

Some additional convergence results are presented in Fig. 8, concerning the total kinetic energy and total
enstrophy of the flow. The computation with penalization parameter e = 10~ and N = 682 active Fourier
modes shows a stronger decay of the total kinetic energy, while the total enstrophy is strongly underestimated.
Setting e = 10~ and N = 2730 yields a curve E() that is on top of the benchmark computation. The curve Z(7)
of the total enstrophy coincides with the benchmark almost everywhere but slightly underpredicts the maxi-
mum value of the enstrophy at ¢t = 0.35. About 90% of the enstrophy is contained in the boundary layer pre-
sented in Fig. 6, especially the values on the wall itself strongly contribute to the total enstrophy.
Unfortunately, we are not able to reconstruct the vorticity in the immediate vicinity of the wall and on the
wall itself (see Fig. 6). This explains why the maximum enstrophy is slightly underestimated (a deviation of
approximately 1%). If, however, the vorticity value on the wall is corrected with a factor two related to the
convergence property (39) the error becomes less than 3.0 x 1072,

As reported by Clercx and Bruneau [6] especially long-time integrations beyond the first dipole-wall colli-
sion are difficult to resolve properly. In Fig. 9, the vorticity isolines are shown for a long-time integration using
N = 1364 active Fourier modes, a penalization parameter ¢ = 10~ and a time step 8¢ = 107°. It clearly shows
that convergence can be achieved as well for long-time integrations by setting the resolution and penalization
parameter appropriately. Furthermore, the larger time integrations support the observation that Gibbs oscil-
lations do not trigger any significant dynamical effects.

7. Convergence analysis of coherent vortex simulation (CVS)

In the following, we present results of coherent vortex simulations using the adaptive wavelet method ([35—
38]) presented in subsection 3.3. The CVS simulations are conducted in the square bounded geometry, see
Fig. lc, the wall thickness d,, = 0.1 for all four side walls (note that Qr=[—1,1]x[—1,1]). First, we inspect
the vorticity isolines computed with CVS versus a high-resolution Chebyshev computation. Then, we consider
the compression rate of the degrees of freedom by the coherent vortex simulation method. In addition, we ana-
lyze the scaling behavior of the discretization error using different resolutions (1282, 2562, 512% and 1024%) for
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Fig. 8. Total kinetic energy E(¢) and enstrophy Z() of a computation with setting e = 107>, N = 682, 6t = 10> (dashed-dot) and ¢ = 1075,
N =2730, 61 = 10~° compared with Chebyshev—Fourier benchmark computation (solid).



the CVS computations. Finally, it is checked if it is possible to
cients by varying the threshold &, while keeping the number of

7.1. Visualization

Fig. 10 visualizes the isolines of vorticity at ¢t = 0.4 for a CV|
time step o = 5 x 107> compared to a Chebyshev benchmark reg
tions using a time step 67 = 1.25 x 107>, Although both simulati
other, one also observes that the symmetr